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Additional Seminars in the Series:

• May 21st Multiple Testing and the False Discovery Rate (Saunak Sen, PhD)

• May 28th The Perfect Doctor: An introduction to Causal Inference (Fridtjof 
Thomas, PhD)

• June 4th Enhancing Statistical Methods in Grants and Papers (Saunak Sen, 
PhD)

Somehow…

4

• More data should give more information but 
there shouldn’t be a “threshold” for “too little 
data”?

• Every observation gives some information – no?
• Learning from data is a gradual affair – no?
• Some data should not override everything else I 

believe – wouldn’t you agree?
• Sequential learning/”updating” should be 

possible – no?
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Bayesian Data Analysis…

5

What is it?

Why should I do it?

How can I do it?
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Outline

• How can we learn from data?
• What are the elements in Bayesian modeling?
▫ What is a posterior distribution?
▫ What is a prior distribution?
▫ What relates the posterior to the prior?
▫ Does the posterior have to come after the prior?

• What makes a Bayesian analysis “Bayesian”?
• What are the advantages of Bayesian modeling?
• What are the difficulties in Bayesian modeling?
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Schools of statistical thought

• Likelihood based approach
• Bayesian approach
• Fiducial approach
• Various ad hoc approaches
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Schools of statistical thought
• Fiducial approach:
Fiducia (lat.) = trust/faith. Proposed by Fisher, “inverse 
probability without prior distributions”. generally not 
coherent and “fiducial probabilities” lack the property of 
additivity, thus, are not a probability measure following 
Kolmogorov’s axioms for probability measures.  Mostly of 
historical interest.

• Various ad hoc approaches
E.g., “3+3 design” for dose escalation methods in Phase I 
clinical trials.
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Schools of statistical thought (cont.)

Probability: A frequency that results from an infinite sequence of 
independent repetitions of the same statistical experiment.

Probability: A “degree of belief”.

Frequentist/Fisherian approach (often likelihood based)
Sir Ronald A. Fisher (1890 – 1962): English statistician, evolutionary 
biologist, and geneticist

– Hypothesis testing (Fisher)
– Confidence intervals (Neyman-Pearson)

Bayesian
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Statistics: The basic problem
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Probability model Observed data

“inverse probability”

probability theory

statistical inference
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How can we learn from data?

Let’s do it!
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“Likelihood”

12

Probability distribution: Probabilities that a certain value is 
observed given a parameter (or many…)

Example: Binomial distribution
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“Likelihood” (cont.)
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“Likelihood” (cont.)
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What are the elements in Bayesian modeling?

posterior  likelihood  prior 
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What are the elements in Bayesian modeling? (cont.)
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Beta-Binomial inferential process 
 Prior: Beta( 1 , 1 )  updated with n = 6  and x = 2
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What are the elements in Bayesian modeling? (cont.)
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(a) Prior distribution

Beta-Binomial inferential process 
 Prior: Beta( 10 , 3 )  updated with n = 60  and x = 20
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(b) Likelihood
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(c) Posterior distribution
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What are the elements in Bayesian modeling? (cont.)
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0.0 0.2 0.4 0.6 0.8 1.0

(a) Prior distribution

Beta-Binomial inferential process 
 Prior: Beta( 10 , 3 )  updated with n = 600  and x = 200

0.0 0.2 0.4 0.6 0.8 1.0

(b) Likelihood

0.0 0.2 0.4 0.6 0.8 1.0

(c) Posterior distribution
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Bayes’ theorem

Source: http://www.bayesian.org/

Thomas Bayes (c. 1702 – 1761)
Presbyterian minister
British mathematician

Born in London
Studied logic and theology in Edinburgh
Elected as a Fellow of the Royal Society in 1742

Essay Towards Solving a Problem in the Doctrine of Chances (1764)

Published posthumously in the Philosophical Transactions of the Royal 
Society of London
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Bayes’ theorem (cont.)

( | ) ( )( | )
( )

P B A P AP A B
P B



conditional probability

marginal probability

marginal probability

conditional probability
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Bayes’ theorem (cont.)
( | ) ( )( | )

( )
P B A P AP A B

P B


Example in diagnostic testing
(Spiegelhalter et al. (2004): Bayesian Approaches to Clinical Trials and Health-Care Evaluation)

Suppose new home HIV test claims to have “95% sensitivity and 98% specificity.”
Test is to be used in a population with HIV prevalence of 1/1000.

“Event A”: Person is HIV+
“Event B”: Person tests positive (home HIV test)

sensitivity of test 1  specificity of test

( )  ( positive test if HIV+) + ( positive test if HIV-)P B P P


  

1( )  (prevalence)1000P A 

0.95 0.001 (1 0.98) 0.999 0.02093     

( | )  sensitivity of test  0.95P B A  

21

TN-CTSI Seminar 
05/14/2019

Bayes’ theorem (cont.)
( | ) ( )( | )

( )
P B A P AP A B

P B


0.95 0.001( | ) 0.045
0.02093

P A B 
 

What is the probability that a person who tests positive 
actually is HIV+? (Positive predictive value) 

- Less than 5 out of 100 who test positive are HIV+.
- Over 95% of those who test positive are in fact not HIV+.

Q:

A:

(End of example.)
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What are the elements in Bayesian modeling? (Cont.)
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A somewhat wider interpretation of Bayes’ theorem:
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What are the elements in Bayesian modeling? (Cont.)

typically means parameters | mod"Model" el form
- unknown mean and stddev in a Normal distribution
- unknown intensity parameter in the Poisson distribution

Examples:
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What are the elements in Bayesian modeling? (Cont.)
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( | ) ( | ) ( )y yp p p  

posterior  likelihood  prior 

What are the elements in Bayesian modeling? (Cont.)
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Prior: Beta distribution
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Thumbtack example
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Thumbtack example (cont.)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Beta distribution: Beta(0.5,0.5)

Proportion theta

p(
th

et
a)

Beta distribution (mean = 0.5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Beta distribution: Beta(1,1)

Proportion theta

p(
th

et
a)

Beta distribution (mean = 0.5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Beta distribution: Beta(10,3)

Proportion theta

p(
th

et
a)

Beta distribution (mean = 0.769

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Beta distribution: Beta(0.5,4)

Proportion theta

p(
th

et
a)

Beta distribution (mean = 0.111

28

TN-CTSI Seminar 
05/14/2019



Likelihood: Binomial
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Thumbtack example (cont.)
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Thumbtack example (cont.)
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( | ) ( | )# ( )# success sp uccessp p  
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Thumbtack example (cont.)
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Beta( ,  ) s n s       

Thumbtack example (cont.)

Posterior distribution:

This distribution is the answer to our inference problem 
about the (still) unknown probability of success.

We can (and should) summarize this posterior distribution 
in any way that is meaningful to our problem at hand.

Summaries include (but are not limited) to:
• Point estimates such as means, medians, modes, quartiles
• Intervals such as Highest Posterior Density (HPD) interval
or intervals with equal tail probabilities
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Thumbtack example (cont.)

Once we have the posterior distribution, we can readily 
predict what we are likely to see in future experiments!

In sharp contrast:
“Traditional” or “frequentist” confidence intervals cannot be interpreted as 
probability intervals and the predictive distribution for future experiments 
remains unclear.
The unknown parameter remains a fixed but unknown quantity that does 
not have a probability distribution.

Take notice!

Such a predictive distribution reflects the remaining 
uncertainty about the probability of “success”.
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Thumbtack example (cont.)
Predictive distribution
(s is the number of “successes” to be observed):

1
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Bin( | , ) Beta( , )s n d   
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( 1)( 1)
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Mode: greatest integer that does not exceed

(If  is an integer,  and 1 are both modes.)m m ms s s 
1Special case: 1 gives discrete uniform with mass ( 1)  for each 0,1, , .n s n      
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What is a posterior distribution?
• The result of a mathematical computation.
• The “vehicle” that contains all the information 

about our parameters of interest (conditional on 
the model form)

“The answer is the answer.”  (Adrian F.M. Smith)
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What is a prior distribution?
• A summary of what we know about a quantity of 

interest before we conduct an experiment.
• A summary of what we do not know about a 

quantity of interest before we conduct an 
experiment.

• A necessary part in our inferential procedure.
• Part of one side of a relationship that must be 

satisfied.
posterior  likelihood  prior 
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What relates the posterior to the prior?

• The likelihood
• Probability calculus (mathematics)

posterior  likelihood  prior 
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(In time?)

• No

posterior  likelihood  prior 
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Our example revisited

posterior  likelihood  prior 
Beta BetaBinomial

This property makes life easy!
Conjugate prior

prior posterior/prior posterior

experiment experiment

Sequential updating/learning
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What makes a Bayesian analysis “Bayesian”?

• Bayes theorem is used by “non-Bayesians” as 
well.

• Interpretation of what is meaningfully put into 
this theorem, especially: parameters.

• Bayesian inference: in parameter space  (not 
sample space)

In sharp contrast:
“Probability” in the “traditional” or “frequentist” school of statistics always 
refers to quantities that can be thought of as resulting from repeated 
trials/experiments (the frequentist definition of probability).  Since 
parameters are interpreted as having a fixed (but unknown) value it is not 
meaningful to operate on them using Bayes’ theorem.
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What are the advantages of Bayesian modeling?

• Flexibility in modeling.
• Predictive distributions for future use (new 

experiments) is readily available.
• A theory of support for scientific hypotheses 

(instead of a theory for evidence against
scientific hypotheses).

• Inference results lend themselves readily to a 
decision theoretic analysis.

• Explicit formulation of prior information: 
greater transparency.
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What are the difficulties in Bayesian modeling?

• Prior distributions:
▫ Conjugate priors are restrictive
▫ General priors come with difficult 

mathematical/numerical problems to solve
▫ Informative and influential
▫ Elicitation of prior information
▫ “Non-informative” priors/reference priors
▫ Consensus priors

• Flexible models are models less well understood
• Greater need for sensitivity analysis
• Computations: Markov Chain Monte Carlo (MCMC) 

a break through but problems remain
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Extensions
• Hierarchical models
• Non-nested models
• Missing data problems
• Model selection
• Model averaging
• Bayesian design of experiments
• …
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A Bayesian reading list
Jeffreys, H. (1961). Theory of Probability (Third ed.). Oxford: Clarendon Press.  
(First published in 1939)

Savage, L. J. (1972). The Foundations of Statistics (Second ed.). New York: 
Dover.

De Finetti, B. (1974). Theory of Probability. New York: Wiley.

DeGroot, M. H. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis 
(Second ed.). New York: Springer.

Box, G. E. P., & Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. 
New York: Wiley.
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A Bayesian reading list (cont.)
Jeffrey, R. C. (1983). The Logic of Decision (Second ed.). Chicago: University of 
Chicago Press.
Kaplan, M. (1996). Decision Theory as Philosophy. Cambridge: Cambridge 
University Press.
Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley.
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996). Markov Chain 
Monte Carlo in Practice. London: Chapman & Hall.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data 
Analysis. Third ed. Boca Raton: Chapman & Hall/CRC; 2014.
Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian Approaches 
to Clinical Trials and Health-Care Evaluation. Chichester: Wiley.

Dey, D. K., & Rao, C. R. (Eds.). (2005). Handbook of Statistics 25 - Bayesian 
Thinking: Modeling and Computation. Amsterdam: Elsevier.

O'Hagan, A. (1994). Kendall's Advanced Theory of Statistics Vol. 2B: Bayesian 
Inference. London: Edward Arnold.
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Lesaffre, E., and Lawson, A. B. (2012). Bayesian Biostatistics. Chichester: Wiley.
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Summary

posterior  likelihood  prior 
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Thank you!
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