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Should we adjust for multiple comparisons?

Family-wise error rate (FWER)

False discovery rate (FDR)
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To adjust or not?

Consider a thought experiment.

Scenario 1: Postdoc A tests association between gene A and
phenotype; publishes paper. Postdoc B tests association between
gene B and phenotype; publishes paper. Postdoc C tests
association between gene C and phenotype; publishes paper. And
so on, for Postdoc Y. Each paper stands on own.

Scenario 2: Postdoc Z uses high-throughput technology to test
association of genes A-Y and same phenotype. Does postdoc Z
have to adjust for multiple comparisons? Should Z be penalized for
using fancier technology?



Examples

▶ Deviant search from mutagenesis
▶ Genome-wide association studies
▶ Differential gene expression using RNAseq
▶ Compare lipid profile of subjects with and without statins
▶ Compare microbiome of obese and healthy individuals



Family-wise error rate (FWER)

Appropriate when multiple tests are used to test a single
hypothesis.

▶ Bonferroni procedure
▶ Holm procedure
▶ Fisher combination procedure



Bonferroni procedure

If we have 𝑚 ordered p-values 𝑝1 ≤ 𝑝2 ≤ … ≤ 𝑝𝑚, then the FWER
corrected p-value is 𝑚 × 𝑝1.

For example, if we perform three tests and get p-values 0.1, 0.04,
and 0.01, and we want to control FWER to be 5% or less, then we
will reject the null hypothesis only if the smallest p-value is 0.05/3
or less. In this case, one p-value (0.01) is smaller, and therefore we
can reject the null hypothesis controlling the FWER at 5%. The
Bonferroni-corrected p-value of the family of tests is 0.01×3=0.03.

▶ Simple and easy to conduct
▶ No assumption on dependence between tests
▶ Low power if 𝑚 is large



Fisher combination procedure

Suppose we have 𝑚 p-values 𝑝1, 𝑝2, … , 𝑝𝑚 from independent tests.
Let 𝑇 = − 2 ∑ ln(𝑝𝑖). This is called the combination statistic.

Compare this to a 𝜒2 distribution with 2𝑚 degrees of freedom to
get the combination p-value for the family of tests.

In the example considered above the combination statistic is
𝑇 = 2(2.30 + 3.22 + 4.61) = 20.26 which gives a p-value of 0.0025
when compared to a 𝜒2 distribution with 6 degrees of freedom.

▶ More complex than Bonferroni
▶ Assumes independence of tests
▶ More power than Bonferroni
▶ Weights p-values equally regardless of information content



False discovery rate (FDR)

Appropriate when we want to evaluate a large number of similar
hypotheses individually.

We want to estimate the probability that a “discovery” is false,
given that we have a discovery (low p-value).

Note similarity with diagnostic tests: we want to estimate the
chance that a discovery (postitive test result) is false (from a
normal sample).



P-value distributions under null, alternative, and observed
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Analogy with diagnostic tests: The diagnostic test is based on the
p-value. The characteristics of the diagnostic test under null
(normal sample, 𝐹0) is known, and the alternative (diseased
sample, 𝐹1) is partially known. The disease prevalence (1−𝜋0) is
not known.



Actual and declared true/false hypotheses

Declared
Null Alt Total

Null 𝑈𝑡 𝑉𝑡 𝑚0Actual Alt 𝑇𝑡 𝑆𝑡 𝑚1
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Two approaches to FDR

There are two main approaches. The first, due to Benjamini and
Hochberg seeks to find a cutoff, 𝑡, given a target proportion 𝛼,
such that

𝐸 ( 𝑉𝑡
𝑅𝑡

, 𝑅𝑡 > 0) ≤ 𝛼.

The second, due to Storey, and closely related to that of Efron and
Tibshirani, seeks to find the q-value, for a fixed cutoff 𝑡 such that

𝑞𝑡 = 𝑃 ( 𝑉𝑡
𝑅𝑡

|𝑅𝑡 > 0) .

Thus, the first approach estimates a cutoff given a target FDR; the
second estimates the FDR given a cutoff.



False discovery rate (FDR) given cutoff (q-value)
The q-value, or FDR corresponding to a cutoff of 𝑡 is the
probability of a false discovery given that there has been a
discovery (a p-value under the cutoff).

We can use Bayes theorem for that.

𝑃(𝐻0|𝑇 ≤𝑡) = 𝑃(𝐻0)𝑝(𝑇 ≤𝑡|𝐻0)
𝑃 (𝑇 ≤𝑡)

𝑞(𝑡) = 𝜋0𝐹0(𝑡)/𝐹(𝑡),
where 𝐹 = 𝜋0𝐹0 + 𝜋1𝐹1. We can estimate 𝐹(𝑡) from the empirical
distribution of p-values, and 𝐹0(𝑡) = 𝑡 since 𝐹0 is uniform. Thus

𝑞(𝑡) = 𝜋0𝑡/𝐹(𝑡) ≤ 𝑡/𝐹(𝑡).

Sharper estimates possible by estimating 𝜋0.
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Get cutoff given desired False discovery rate (FDR)

Let 𝑝1, 𝑝2, … , 𝑝𝑚 be the ordered p-values. If 𝜋0 is the proportion
of null hypotheses, then the cutoff 𝑡 such that

𝐸 ( 𝑉𝑡
𝑅𝑡

, 𝑅𝑡 > 0) ≤ 𝛼

is
𝑡 = max {𝑝(𝑖) ∶ 𝑝(𝑖) ≤ ( 𝑖

𝑚) ( 𝛼
𝜋0

)} .

In practice, we do not know 𝜋0, so a conservative choice is 𝜋0 = 1.



Benjamini-Hochberg procedure
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Deviant search example

Battery of 6 tests (vertical movement, ambulatory movement, RER;
in dark and light phases) per mouse. A FDR of 10% was desired.

Number FDR P-value Bonferroni
Mice Tests Mice Tests Cutoff Mice Tests

Control training 24 144 0 0 0 0 0
Control Test 24 144 2 6 0.0016 2 6
Mutant Test 22 132 17 49 0.0371 12 28



Gene expression example

Compare genomewide gene expression between two mouse strains
in spinal cord tissue samples. The Illumina mouse arrays that we
used can hybridize up to six samples on the same “chip”. Spinal
cord mRNA from 6 B6 mice, and 6 LP/J mice. Two chips were
hybridized. In each chip mRMA hybridized to three B6 and three
LP/J samples. A total of 48358 probes. Our goal is to find out
which genes (probes) are differentially expressed between strains.

f we perform a Bonferroni correction to the p-values, then only
genes with p-values smaller than 0.05/48358 ≃ 10−6 would be
considered significant. Only about 654 genes fit this bill.

However, if we estimate the q-values, and find genes with a q-value
smaller than 0.05, then we find 4163 genes. If we look for genes
with a q-value smaller than 0.01, we find 2459 genes. An
estimated 27% of the genes show differential expression.



P-value distributions

p−value for strain effect
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Using permutation

An alternative analysis would be to use a permutation test, by
permuting the strain labels within each chip. The permutations
allow us to obtain the distribution of the test statistic under the
hypothesis of no strain effect, but in the presence of a possible chip
effect. In this data, we have only (6

3) = 20 permutations possible.
By combining the permutations in both chips, a total of 400
permutations are possible. We exhaustively enumerated each of
them and calculated the average strain effect within chip. This was
then compared to the observed average strain effect within chip
and ranked.

For 1761 probes the observed effect was ranked 1, and for 1961
probes it was ranked 400. Thus the two possible extreme ranks
were observed 3722 times compared to the expectation of
48358/200 ≃ 242 under the null. Thus the genes with rank 1 or
400 have a q-value of at most 242/3722 ≃ 0.065.



P-value distributions from permutations (exhaustive
enumeration)
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Figure 1: Rank of observed effect among permutations of strain labels
within chip. The effect was measured as the average strain effect within
chip.



Notes

▶ Given a cutoff, 𝑡, the q-value is the proportion of null
hypotheses among the discoveries. It is one minus the positive
predictive value.

▶ The p-value under the null must be correctly calibrated,
otherwise the FDR estimates are incorrect.

▶ The p-value distribution under the alternative is not needed,
but it is assumed that small p-values are more likely under the
alternative.

▶ Estimates of the proportion of null hypotheses (𝜋0) affects the
q-value (and FDR), just like the disease prevalence affects the
positive predictive value.

▶ Independence of the tests (p-values) is not required as long as
we can get good estimates of the p-value distributions.

▶ There is an implicit understanding that the hypotheses/tests
are exchangable (or similar).



Summary

▶ Consider research question carefully to decide if multiple
comparisons adjustment is needed, and if so, what kind

▶ FWER appropriate when many tests are used to test a single
hypothesis

▶ FDR appropriate when we want to evaluate a large number of
similar hypotheses individually

▶ Be transparent regarding process and assumptions
▶ Report all p-values so that others can replicate or adjust

assumptions



Further reading

▶ Shaffer, J. P. (1995). Multiple hypothesis testing. Annual
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▶ Benjamini, Y., and Hochberg, Y. (1995). Controlling the false
discovery rate: a practical and powerful approach to multiple
testing. Journal of the Royal Statistical Society Series B, 57,
289-300. URL

▶ Storey JD. (2003) The positive false discovery rate: A
Bayesian interpretation and the q-value. Annals of Statistics,
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R functions:
▶ stats::p.adjust
▶ qvalue::qvalue

http://doi.org/10.1146/annurev.ps.46.020195.003021
http://www.jstor.org/stable/4615733
http://www.jstor.org/stable/2346101
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.aos/1074290335
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